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Deceased Donor Kidney Transplantation

for Older Transplant Candidates: A New
Microsimulation Model for Determining

Risks and Benefits

Matthew B. Kaufmann , Jane C. Tan, Glenn M. Chertow,

and Jeremy D. Goldhaber-Fiebert

Background. Under the current US kidney allocation system, older candidates receive a disproportionately small
share of deceased donor kidneys despite a reserve of potentially usable kidneys that could shorten their wait times.
To consider potential health gains from increasing access to kidneys for these candidates, we developed and cali-
brated a microsimulation model of the transplantation process and long-term outcomes for older deceased donor
kidney transplant candidates. Methods. We estimated risk equations for transplant outcomes using the Scientific
Registry of Transplant Recipients (SRTR), which contains data on all US transplants (2010–2019). A microsimula-
tion model combined these equations to account for competing events. We calibrated the model to key transplant
outcomes and used acceptance sampling, retaining the best-fitting 100 parameter sets. We then examined life expec-
tancy gains from allocating kidneys even of lower quality across patient subgroups defined by age and designated
race/ethnicity. Results. The best-fitting 100 parameter sets (among 4,000,000 sampled) enabled our model to closely
match key transplant outcomes. The model demonstrated clear survival benefits for those who receive a deceased
donor kidney, even a lower quality one, compared with remaining on the waitlist where there is a risk of removal.
The expected gain in survival from receiving a lower quality donor kidney was consistent gains across age and race/
ethnic subgroups. Limitations. Limited available data on socioeconomic factors. Conclusions. Our microsimulation
model accurately replicates a range of key kidney transplant outcomes among older candidates and demonstrates
that older candidates may derive substantial benefits from transplantation with lower quality kidneys. This model
can be used to evaluate policies that have been proposed to address concerns that the current system disincentivizes
deceased donor transplants for older patients.

Highlights

� The microsimulation model was consistent with the data after calibration and accurately simulated the
transplantation process for older deceased donor kidney transplant candidates.

� There are clear survival benefits for older transplant candidates who receive deceased donor kidneys, even
lower quality ones, compared with remaining on the waitlist.

� This model can be used to evaluate policies aimed at increasing transplantation among older candidates.
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In the United States, persons who are 65 y or older
make up a large and growing proportion of patients with
end-stage kidney disease (ESKD), from 36% to 48%
between 1985 and 2009.1 There is a clear survival benefit
to receiving a kidney transplant. Men and women with
ESKD aged 65 to 69 y have a remaining life expectancy
of 4.8 and 4.9 y if on dialysis or 11.6 and 12.6 y if
transplanted, respectively.2

However, choosing whether to transplant an individ-
ual involves weighing the initial risk of mortality within
the first year of transplantation against the potential for
longer-term benefits of survival and improved quality of
life. Prior studies suggest that for older patients, it takes
longer for the benefits of transplantation to outweigh the
initial risks from the procedure.3 While about 50% of
patients with ESKD are 65 y or older, they comprise only
20% of patients who receive transplants.4 This suggests
that there is a large, unmet need for these patients.

Despite the exceptionally long waiting times experi-
enced by many patients, some of whom suffer greatly on
dialysis, many potentially usable kidneys are discarded.
A recent study found that 62% of the kidneys discarded
in the United States would have been transplanted under
France’s system.5 Another study found that older candi-
dates preferred accepting a lower-quality kidney instead

of waiting longer for a higher-quality kidney.6 These
observations suggest that there is an opportunity to use
donor kidneys that would currently be discarded to pro-
vide more transplants for older candidates, thereby short-
ening wait times.

It has been suggested that the waste problem may be
due to the pressure to optimize transplant outcomes as
program performance on selected outcomes are subject to
national comparisons.7 Although performance metrics are
being revised, transplant programs are currently assessed
on 3 primary performance metrics: first-year graft and
patient survival, transplantation rate, and waitlist mortality
rate.8 These metrics have led to unintended consequences
of systematic bias against transplanting sicker patients and
using less optimal donor kidneys, exacerbating risk aver-
sion and the underprovision of transplantation of older
candidates, incentivizing the selection of healthier candi-
dates and higher-quality organs.9

To evaluate policies that influence transplantation
rates among the older ESKD population, it is first neces-
sary to develop a model that can accurately simulate the
complex processes encompassing competing risks from
listing, transplantation, graft loss, and death. We esti-
mated a series of risk equations using complete US kid-
ney transplant data such that when they were combined
and calibrated, they accurately predict key pre- and post-
transplant outcomes and hence quantify the long-term
outcomes of transplanting kidneys of different quality in
older ESKD candidates.

Methods

Data

This study used data from the Scientific Registry of
Transplant Recipients (SRTR). The SRTR data system
includes data on all donors, waitlisted candidates, and
transplant recipients in the United States, submitted by
the members of the Organ Procurement and Transplan-
tation Network (OPTN). The Health Resources and Ser-
vices Administration, US Department of Health and
Human Services, provides oversight of the activities of
the OPTN and SRTR contractors.

To model waitlist outcomes and post–deceased donor
transplant outcomes, we constructed 2 cohorts using the
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SRTR data: 1 for waitlist outcomes and 1 for transplant
outcomes (Figure 1). The cohort for waitlist outcomes
included all kidney transplant candidates who were active
on the transplant list at age 65 y or older between Janu-
ary 1, 2010, and December 31, 2019. We excluded those
listed for multiorgan transplants or who had received a
prior organ transplant. The cohort for transplant out-
comes included all deceased donor kidney transplant
recipients aged 65 y or older at the time of transplant,
with the transplanting having occurred between January
1, 2010, and December 1, 2019. We excluded those listed
for multiorgan transplants or who had received a prior
organ transplant. This study was approved by the Insti-
tutional Review Board of Stanford University (protocol
40876).

Statistical Analysis

We estimated the relevant regression equations for each
cohort based on 80% of the available observations with
20% withheld for the purpose of calibrating the microsi-
mulation that combines our estimated equations and
accounts for competing risks. We estimated equations to
predict waitlist and transplant outcomes. Waitlist out-
comes included time to deceased donor kidney trans-
plant, living donor kidney transplant, death on the

waitlist, and other removals from the list. Transplant
outcomes include 30-d mortality, 30-d graft loss; delayed
graft function (DGF), 30-d graft success (defined as no
complications within the first 30 d), time to long-term
graft loss, time to death with a functioning kidney trans-
plant, and time to death after graft loss. We estimated
each equation separately. The equation to predict 30-d
outcomes used a multinomial logistic regression, with
each outcome being mutually exclusive. Equations for all
other outcomes derived from parametric survival analy-
ses. For these equations, we assumed that the hazard
function follows a parametric distribution. We examined
the graphical representation of Cox-Snell residuals com-
pared with hazards and compared the Akaike informa-
tion criterion to determine the appropriate distribution.10

We tested the fit of the following distributions: Weibull,
Gompertz, log-normal, and log-logistic. Models using
Weibull, log-normal, and log-logistic distributions were
parameterized as accelerated-failure time models, while
models using the Gompertz distribution were parameter-
ized as proportional-hazards models.

Waitlist outcome equations control for the following
patient characteristics: age at listing, sex, designated race/
ethnicity, years of dialysis at activation, year of listing,
peak calculated panel reactive antibodies (cPRA), blood
type, history of diabetes, history of chronic obstructive

Figure 1 Cohort construction.
Cohort inclusion/exclusion criteria flow chart. A total of 18,135 recipients and 71,522 candidates were used to construct risk prediction

equations, and 4,534 recipients and 17,881 candidates were used to calibrate the model.

Kaufmann et al. 3



pulmonary disease (COPD), history of peripheral vascu-
lar disease (PVD), history of angina/coronary artery dis-
ease (CAD), and OPTN region. We use cPRA because it
is a metric that represents the likelihood of the candidate
rejecting a donor kidney, thus making it more difficult to
find a match for patients with high cPRA levels. Blood
type affects candidates in a similar fashion, such that can-
didates are not transplanted with deceased donor organs
of a different blood type. Therefore, the probability of
receiving a deceased donor transplant is limited by the
pool of donors with the same blood type. We categorized
designated race/ethnicity into 4 groups: non-Hispanic
White (White), Black patients of any ethnicity (Black),
non-black Hispanic (Hispanic), and other persons of
color of any ethnicity not included in the previous cate-
gories. We use OPTN regions to account for regional
variation in the supply of donor kidneys. The time vari-
able for these outcomes was time from waitlist activation
to event.

Transplant outcome equations control for the follow-
ing patient characteristics: age at transplant, sex, race/
ethnicity, years on dialysis before transplant, peak cPRA,
blood type, transplant year, history of diabetes, history
of COPD, history of PVD, and history of angina/CAD.
Transplant outcomes also control for donor-related char-
acteristics including kidney donor profile index (KDPI)
and cold ischemia time. KDPI is a composite metric that
takes a variety of donor-related characteristics and trans-
forms them into a continuous value between 0 and 100
that is intended to reflect the risk of graft failure. Cold
ischemia time is defined as the time during which the
blood supply is cut off from the donor until it is restored
in the recipient. Cold ischemia times are typically less
than 48 h, with the mean time approximately 18.5 h in
our data set. This is an important metric because longer
cold ischemia times are associated with decreased quality
of the donor kidney. In addition to the above variables,
the graft loss, death with function, and death after graft
loss equations control for whether the recipient experi-
enced DGF. The equation for death with function did
not include the transplant year variable. We capped the
effect of the transplant year variable to continue only
through 2020 so as not to assume linear trends in trans-
plant outcomes beyond our estimated data. For the graft
loss and death with function parametric regressions, the
time variable was time from transplant. For the death
after graft loss parametric regression, the time variable
was time from graft loss.

The statistical analysis was conducted using Stata 14
software.11

Microsimulation Model Description

The microsimulation model was implemented using the
R programming language.12 It begins with a cohort of
candidates who are 65 y or older on the deceased donor
waitlist (Figure 2). For each person, there is a monthly
probability of 1 of the 4 possible waitlist outcomes occur-
ring: matching with a deceased donor transplant (event
of interest), or else either dying on the waitlist, being
removed from the waitlist, and receiving a living donor
kidney (censoring events). We assume that those who are
removed from the waitlist are removed permanently and
are no longer eligible for a transplant. We also assumed
that those who reach the age of 100 y without an event
occurring die on the waitlist.

Candidates who are matched with a deceased donor
kidney enter the posttransplant simulation. The model
first determines the quality and recency of the deceased
donor kidney with which the candidate is matched in
terms of KDPI and cold ischemia time, which are impor-
tant predictors of transplant outcomes. For each donor
organ, we use a copula that correlates KDPI and cold
ischemia time based on historical data using the R
packages ‘‘fitdistrplus’’ and ‘‘copula.’’13,14

Each candidate who receives a deceased donor kidney
then faces the risk of events for the first 30-d posttrans-
plant outcomes based on the multinomial logistic regres-
sion equation. Those who survive the first 30 d are then
followed monthly, facing risks of graft loss, death with
function, and death after graft loss based on the time-to-
event equations. All transplanted patients are assumed
to die at age 100 y if they are still alive. We assume that
those who experience graft loss are not added back to
the waitlist and are thus not eligible to be retransplanted.

Calibration

We performed calibration to ensure that our model
simultaneously matched key observed target outcomes
and to reflect uncertainty from these empirical targets via
our model parameters to our model-predicted out-
comes.15 We derived our targets from observed outcomes
of data held out from equation development. The betas
for each regression are jointly distributed, so we sought
to vary the coefficients of each equation probabilistically
while preserving the correlation structure. To do this for
parametric survival models, we followed the method of
Briggs et al.,16 which involves a copula-like approach to
sample from the multivariate normal distribution of the
parameters based on a Cholesky decomposition of the
covariance matrix. Our priors assume no correlation
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across the coefficients from different equations. We simu-
lated 100,000 individuals with the microsimulation model
for each parameter set. Using the simulations from each
parameter set, we then calculated the goodness of fit based
on a sum of squared errors for each outcome divided by
the number of targets for each outcome, then summing
across all outcomes, so that each outcome was given equal
weight. This procedure was repeated 4,000,000 times,
resulting in 4,000,000 parameter sets. We then used accep-
tance sampling with the goal of generating good coverage
of the width of our targets by retaining the top 100 best-
fitting parameter sets. Finally, these parameter sets are

weighted by the sum of the absolute mean differences from
the targets divided by the number of targets for each out-
come, to give weight to the relative goodness of fit within
the top parameter sets. We conducted all further analyses
with these 100 best-fitting sets, with their expectations and
percentiles weighted by their relative goodness of fit.

To further ensure that we matched the data as pre-
cisely as possible, in addition to comparing modeled out-
comes to our prespecified targets, we assessed modeled
outcomes on the timing of events for consistency with the
empirical data. We compared Kaplan-Meier survival
curves of the observed, held-out data to the simulated

Figure 2 Model diagram.
Model diagram in which individuals start in the waitlist Markov model. If they receive a deceased-donor transplant, they have 1 of the 30-d

outcomes before entering the posttransplant Markov model.

Kaufmann et al. 5



survival curves generated by each of the 100 accepted
parameter sets. We repeated this exercise for key sub-
groups including by race/ethnicity and by diabetes status.

Using the 100 best-fitting parameter sets, we then esti-
mated life expectancy for those who receive a deceased
donor transplant compared with those who do not
receive one. We assumed post–waitlist removal survival
times based on the 2020 United States Renal Data Sys-
tem Annual Data Report, which contains survival times
by treatment modality and age group through 2018.2 We
will also examine life expectancy for those who receive a
transplant in 4 categories of KDPI values: 0 to 20, 21 to
34, 35 to 85, and 86 to 100. These cut points are used for
allocation decisions in the following ways: 1) KDPI val-
ues of 0 to 20 are first offered to patients with the highest
20% estimated posttransplant survival times, 2) KPDI
values of 21 to 34 and 35 to 85 each have their own allo-
cation rules, and 3) KDPI values of 86 to 100 are offered
only to candidates willing to accept them.

The data reported here have been supplied by the
Hennepin Healthcare Research Institute as the contrac-
tor for the Scientific Registry of Transplant Recipients
(SRTR). The interpretation and reporting of these data
are the responsibility of the authors and in no way should
be seen as an official policy of or interpretation by the
SRTR or the US government. This project was sup-
ported by grant T32HS026128 from the Agency for
Healthcare Research and Quality. The content is solely
the responsibility of the authors and does not necessarily
represent the official views of the Agency for Healthcare
Research and Quality.

Results

Model Calibration

From our 4 million parameter sets, we identified the top
100 best-fitting sets. We then compared the simulated out-
comes to targets for key model outcomes (weighted mean
and 95% credible intervals (CrIs). Figure 3 shows good
concordance between the model-predicted and observed
outcomes for the top 100 parameter sets. The model shows
less uncertainty in the calibrated parameter sets with respect
to the pretransplant outcomes as compared with the post-
transplant outcomes, since the uncertainty with respect to
the posttransplant outcome includes any deviation from the
observed pretransplant population and its outcomes. When
we instantiated the observed population of individuals who
received a transplant, the uncertainty with respect to the
posttransplant outcomes was substantially smaller.

A crucial component of accurately predicting posttrans-
plant outcomes is simulating a patient mix of deceased-
donor recipients similar to the observed characteristics.
Supplementary Table S1 compares the transplant recipient
characteristics between the simulated and observed
cohorts. The model accurately replicates the patient mix in
terms of their observed recipient characteristics.

The model also replicates the timing of key outcomes,
as appears in the observed held-out data. Figure 4 shows
survival curves resulting from each of the top 100 para-
meter sets (in gray) compared with the observed survival
curve (in red). The line weight for each of the parameter
sets represents the relative goodness of fit within the top
100. Corresponding modeled outcomes for key sub-
groups including by designated race/ethnicity and dia-
betes status also demonstrated good concordance with
the observed data (Supplementary Figures S2 and S3).

Simulated Benefits of Transplantation

Using the best-fitting parameter sets from model calibra-

tion, we calculated the estimated weighted mean survival

time. Our simulations show that for transplant candi-

dates 65 y and older, the mean survival time for those

who do not receive a transplant is 5.9 (95% CrI: 5.7–6.1)

y. These values differ by sex, where, on average, male

candidates who do not receive transplants are expected

to live for 5.7 (95% CrI: 5.5–5.9) y, while female candi-

dates who do not receive a transplant live for 6.1 (95%

CrI: 5.9–6.3) y. For those candidates who accept the low-

est quality kidneys as measured by a KDPI value of 85 or

greater, the expected survival is 8.4 (95% CrI: 6.8–9.9) y

(Figure 5). This shows that transplanting with even a

lower quality kidney can substantially extend life expec-

tancy. The benefits of receiving a deceased-donor kidney

are consistent across designated race/ethnicity and age at

listing groups. The average life expectancy for those who

receive high KDPI (86+) kidneys in each designated

race/ethnicity group is 8.2 (95% CrI: 6.7–9.7) y, 8.4 (95%

CrI: 6.5–9.9) y, 8.7 (95% CrI: 7.2–10.2) y, and 9.3 (95%

CrI: 7.7–10.5) y for White, Black, Hispanic, and other

people of color, respectively (Supplementary Table S8).

Transplant-related extension of life expectancy holds true

even for those who were added to the waitlist at 75 y of

age or older, where the mean survival time for those who

receive a high KDPI kidney is 7.2 (95% CrI: 5.6–8.8) y

compared with 5.3 (95% CrI: 5.0–5.5) y if they do not

receive a transplant.
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Figure 3 Simulated outcomes compared with observed targets.
Results of calibration comparing observed to simulated targets, showing strong fit to our targets.
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Discussion

To evaluate the effects of policy options relating to allo-
cation of kidneys, it is necessary to develop a model that
can simulate the entire transplantation process for the
older ESKD population. Our microsimulation model

accurately replicates a range of key kidney transplant
outcomes among older candidates and demonstrates that
they may derive substantial benefits even from subopti-
mal kidneys that are currently infrequently transplanted.
We developed and calibrated the series of risk equations

Figure 4 Kaplan-Meier curves: simulated versus observed outcomes.
Kaplan-Meier curves comparing simulated to observed survival. The gray curves each represent 1 of the simulated best-fitting parameter sets,

while the red curve represents the observed data.
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that encompass competing risks from listing, transplan-
tation, graft loss, and death, using older patient-specific
characteristics. We have demonstrated how risk equa-
tions that have been developed independently can be
combined to accurately predict the outcomes of interest.
We have also demonstrated the capability of the model
to project life expectancy. The current system likely
undertransplants patients 65 y of age and older, as we
have shown that they could potentially gain several years
of life expectancy even if they are transplanted with
lower-quality kidneys that are often discarded.

Compared with France, the United States transplants
donor kidneys that are on average higher quality at the
cost of discarding many more recovered kidneys. From
2004 to 2014, the mean KDPI of transplanted kidneys in
the United States was 45, compared with 60 in France.
Unfortunately, the United States also discarded 17.9%
of recovered kidneys, while France discarded only 9.1%.4

Some potential policies to consider that make better use
of recovered donor kidneys are a conditional listing
policy and an exemption policy. A conditional listing
policy would list older candidates only if they are willing

Figure 5 Expected survival by subgroup.
Life expectancy by subgroup. The top row is for all candidates, the middle row is by race/ethnicity, and the bottom row is by age at listing. We

see consistent benefits of transplantation across all subgroups.

Kaufmann et al. 9



to accept a high KDPI kidney, and an exemption policy
would prospectively exempt some older candidates from
transplant center performance metrics, incentivizing cen-
ters to transplant more older candidates.

It is important to note that the model is not meant to
be used as an individual-level risk prediction tool.
Rather, its prediction accuracy with respect to the
patient population and patient subgroups are most rele-
vant for evaluating the comparative effectiveness of
policies.

We were unable to perform external validation due to
the comprehensive nature of the SRTR data set and the
lack of studies with an older population in non-US set-
tings. However, fitting SRTR data well overall and with
respect to subgroups is strong evidence of validity.

One limitation of the model is the limited ability to
incorporate socioeconomic variables into the risk equa-
tions. While the SRTR data set captures data on all
solid-organ transplants in the United States, it does not
collect many socioeconomic variables. We tested addi-
tional variables that were ultimately omitted because
they did not improve the predictions. Ultimately, the des-
ignated race and ethnicity variables likely reflect infor-
mation on how outcomes vary due to socioeconomic
differences that correlate with race and ethnicity as well
as systemic issues including access to, and systematic
biases in, health care. We also would note that in our
categorization of race and ethnicity, other persons of
color represent a diverse array of groups who might have
very different biology and life experience. The model was
developed and calibrated for an older kidney transplant
population in the United States and would require addi-
tional work and validation to apply to transplant systems
in other countries. As with all observational and model-
ing studies, we deal with the issue of residual confound-
ing. By using administrative data, we lack the granularity
that would improve our predictions. For example, we are
unable to determine how well controlled a patient’s dia-
betes is, which would greatly affect their probability of
waitlist and posttransplant outcomes. However, on aver-
age, we predict transplant outcomes accurately for the
patients with and without diabetes.

Overall, the model we have constructed and calibrated
closely mimics the transplantation process, from listing
for transplantation through post–deceased donor trans-
plantation outcomes. Alternative allocation policies have
been proposed to address concerns that the current sys-
tem disincentivizes deceased donor transplants for older
and sicker patients. It is crucial to provide prospective
evidence of policies that will achieve crucial health gains

in an underserved, sick population. As the kidney trans-
plant community considers changes to performance
metrics, our microsimulation model can serve as a crucial
input to shaping the future landscape of kidney trans-
plantation policy.
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